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Abstract

This paper presents the stability analysis of a system composed of rotating beams on a flexible, circular fixed ring, using

the Routh–Hurwitz criterion. The model displayed has been fully developed within the rotating frame by use of an energy

approach. The beams considered possess two degrees of freedom (dofs), a flexural motion as well as a traction/compression

motion. In-plane deformations of the ring will be considered. Divergences and mode couplings have thus been underscored

within the rotating frame and in order to simplify understanding of all these phenomena, the dofs of the beams will first be

treated separately and then together. The dynamics of radial rotating loads on an elastic ring can create divergence

instabilities as well as post-critical mode couplings. Moreover, the flexural motion of beam rubbing on the ring can also

lead to mode couplings and to the locus-veering phenomenon. The presence of rubbing seems to make the system unstable

as soon as the rotational speed of the beams is greater than zero. Lastly, the influence of an angle between the beams and

the normal to the ring’s inner surface will be studied with respect to system stability, thus highlighting a shift frequency

phenomenon.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Problems caused by loads moving over elastic structures occur rather frequently. The case of rotating
structures has been given special attention. A flexible rotating disc excited by loads can experience instabilities,
which for instance can occur when using a circular saw, as widely studied by Mote [1,2], with computer
memory storage discs, studied by Iwan and Stahl [3], Iwan and Moeller [4] and Crandall [5] among others, or
in the field of brake systems, Ouyang et al. [6], Chambrette and Jezequel [7]. In all these examples, the studied
system was composed of a rotating disc whose in-plane vibrations were considered rubbed on its plane by
stationary loads or by a fixed disc rubbed by rotating loads. Post-critical instabilities have thus been identified
and their leading parameters determined. Few studies however could be found that focus on a rotating ring
rubbed by loads on its inner surface. Canchi and Parker [8] recently investigated parametric instabilities due to
rotating springs on a circular ring. This kind of system can be applied, for instance, in planetary gears or turbo
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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machinery, in the case of contacts between the rotor blades and the casing [9]. This study will thus present a
stability analysis of a flexible ring rubbed on its inner surface by rotating beams with two degrees of freedom
(dofs): flexural motion and traction/compression. To better understand this phenomenon, the two dofs will
first be separated and then studied together. In the first section, the ring will be excited by beams featuring only
the traction/compression dof rotating on its inner surface. Afterwards, the beams considered will possess just a
flexural dof. Finally, these two dofs will be studied in combination with one another. This paper will conclude
with an examination of the influence of a constant angle between each beam and the normal to the inner ring
surface.
2. The model

The model considered in this study consists of a flexible ring rubbed by one or several beams on its inner
surface, as depicted in Fig. 1a, in the case of one rotating beam. These Euler–Bernoulli beams have two dofs in
the rotating frame, i.e. in the frame attached to the beams: traction/compression motion ~ut, and flexural
motion~uf . An energy method is used to develop the model; hence, the dofs of the jth beam are expressed by
the following Ritz functions utj

ðx; tÞ ¼ utj
ðtÞ sinðpx=2RstatÞ, corresponding to the exact traction/compression

mode shape of a clamp-free beam, and uf j
ðx; tÞ ¼ uf j

ðtÞ 1� cosðpx=2RstatÞ
� �

for its flexural dof, with x being the
local axis along the beam and Rstat the ring radius. Concerning the ring, its in-plane flexural vibrations are
considered, i.e. two dofs are considered in the rotating frame: radial displacement ~usðf; tÞ, and tangential
displacement ~oðf; tÞ, with f being the angular position of the mass centre of a ring’s cross-section in the
rotating frame. This latter dof can be expressed using [10]: oðf; tÞ ¼

Pktot
n¼2AnðtÞ cos nfþ BnðtÞ sin nf, in which

the rigid body motion has been eliminated. In order to generate as simple a model as possible, only one mode
shape, the nth one, will be considered for the ring, hence: oðf; tÞ ¼ AnðtÞ cos nfþ BnðtÞ sin nf. Moreover, the
considered ring is assumed to be inextensible, thus implying that its radial displacement can be expressed from
its tangential displacement by usðf; tÞ ¼ qoðf; tÞ=qf. The beam free ends are assumed to remain in steady-
state contact with the inner surface of the ring, therefore, a link relationship between the pertinent dofs must
be written as follows: usðf ¼ fj ; tÞ ¼ �utj

ðx ¼ Rstat; tÞ cos aj þ uf j
ðx ¼ Rstat; tÞ sin aj, with aj being the angle

between the jth beam and the normal to the ring’s inner surface. Since an energy method has been applied to
develop the entire model, the kinetic energy and potential energy are defined for both the beams and the ring.
Rubbing strength is introduced by defining its work. The expressions of these energies and of this work are
given in Appendix A, along with expressions for the mass matrix, stiffness matrix, circulatory matrix and
gyroscopic matrix associated with this model. To better understand the phenomenon appearing within this
structure however, the beams are first considered to be normal to the ring’s inner surface (aj ¼ 01). In this case,
the system can be separated into simpler structures. The first such structure consists of beams with just a
traction/compression dof rubbing on the ring. The second consists of beams with just a flexural motion
rubbing on the ring. Then, both of these dofs will be combined. In these cases and for the sake of simplicity (to
handle modal mass and stiffness), the beams will be compared to radial spring-masses having two dofs (see
Fig. 1b). The associated model has been developed in Appendix B. Lastly, the effect of an angle of inclination
between the beams and the ring will be analysed.
(a) (b)

Fig. 1. (a) Model of Euler–Bernoulli beam rubbing on an elastic ring, and (b) model of ring rubbed by one rotating load having two

degrees of freedom.
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3. Rotating radial beams rubbing on a flexible ring

The stability of an elastic ring rubbed by one or several beams can be investigated by determining the
solution l ¼ aþ ib to the characteristic equation detðl2Mþ lðGþ RÞ þ KÞ ¼ 0, where M, G, R and K are the
mass matrix, gyroscopic matrix, circulatory matrix and stiffness matrix of the system, respectively. The system
becomes unstable if one or more of the eigenvalue real parts a are positive. Throughout this section, the beams
are assumed to be radial to the ring’s inner surface (aj ¼ 01).
3.1. Beams with just a traction/compression degree of freedom

In this section, the beams considered contain only a traction/compression dof. They can thus be represented
by radial rotating spring-masses rubbing on the elastic ring, as plotted in Fig. 2 in the particular case of just
one rotating load. Due to the link relationship between the radial dofs of the model, the system has two dofs
and the associated matrices can be deduced from the complete system developed in Appendix B. In the case of
just one rotating load, the dynamic behaviour of the system can thus be described by the following matrix
equation:

Mstat n2 þ 1
� �

�m 1þ h
2Rstat

n2 � 1
� �n o

mrn

0 Mstat n2 þ 1
� �

þmrn
2

2
64

3
75 €An

€Bn

( )
þ

0 �2MstatnO n2 þ 1
� �

2MstatnO n2 þ 1
� �

0

2
4

3
5 _An

_Bn

( )

þ
Kstatn

2ðn2 � 1Þ2 �Mstatn
2O2 n2 þ 1
� �

0

"
�m 1þ h

2Rstat
n2 � 1
� �n o

kr �mrO2
� �

n

K statn
2ðn2 � 1Þ2 �Mstatn

2O2 n2 þ 1
� �

þ ðkr �mrO2Þn2

3
75 An

Bn

( )

¼
m 1þ h

2Rstat
n2 � 1
� �n o

mrO2Rstat þNU

� �
�mrRstatO2n

8<
:

9=
;

with Mstat ¼ rstatSstatRstatp and K stat ¼
EstatI statp

R3
stat

. ð1Þ

It is obvious that rubbing makes the mass and stiffness matrices asymmetric, which is known to be
characteristic of a potentially unstable system. Some potential critical speeds of the system may be determined
analytically using the Routh–Hurwitz criterion. The characteristic polynomial of this matrix equation actually
has the following form: PðsÞ ¼ As4 þ Bs3 þ Cs2 þDsþ E with

A ¼ Mstat n2 þ 1
� �� �2

þMstat n2 þ 1
� �

n2mr

B ¼ 1þ
h

2Rstat
n2 � 1
� �� �

mmr2Mstatn
2 n2 þ 1
� �

O

Fig. 2. Model of radial spring-mass rubbing against a ring.
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C ¼ Kstatn
2ðn2 � 1Þ2 2Mstat n2 þ 1

� �
þ n2mr

� �
þMstatn

2O2 n2 þ 1
� �2

2Mstat �mr½ � þMstat n2 þ 1
� �

n2kr

D ¼ 1þ
h

2Rstat
n2 � 1
� �� �

kr �mrO2
� �

m2Mstatn
2 n2 þ 1
� �

O

E ¼ �Mstatn
2O2 n2 þ 1
� �

þ K statn
2ðn2 � 1Þ2

� �
�n2O2 Mstat n2 þ 1

� �
þmr

� �
þ K statn

2ðn2 � 1Þ2 þ n2kr

� �
. ð2Þ

According to the Routh–Hurwitz criterion, the polynomial PðsÞ ¼ As4 þ Bs3 þ Cs2 þDsþ E has all its
roots with real parts negative if A, B, (BC�AD)/B, ððBC � ADÞD� B2EÞ=ðBC � ADÞ and E have the same
sign. Each sign change of one of these terms implies that one of the roots of the characteristic polynomial
crosses the vertical axis, making its real part positive, hence the system becomes unstable. It is obvious that A

and B are always positive.
Regarding the term (BC�AD)/B:
�
 If Mstat n2 þ 1
� �

1þ 2n2
� �

4mrn
4, it is positive if

O24O2
c4 ¼ o2

r

Mstat n2 þ 1
� �

Mstat n2 þ 1ð Þ 1þ 2n2ð Þ �mrn4½ �
� O2

c

n2 mrn
2 þ 2Mstat n2 þ 1

� �� �
Mstat n2 þ 1ð Þ 1þ 2n2ð Þ �mrn4½ �

provided that o2
r4O2

c n2 mrn
2 þ 2Mstat n2 þ 1

� �� �� �
=Mstat n2 þ 1

� �
, otherwise Oc4 ¼ 0.
�
 If Mstatðn
2 þ 1Þð1þ 2n2Þomrn

4, it is negative if O24O2
c4 provided that

o2
roO2

c

n2 mrn
2 þ 2Mstat n2 þ 1

� �� �
Mstat n2 þ 1ð Þ

; otherwise Oc4 ¼ 0.

Regarding the term ððBC � ADÞD� B2EÞ=BC � AD:

�
 If o2

r4O2
c n2 mrn

2 þ 2Mstat n2 þ 1
� �� �� �

=Mstat n2 þ 1
� �

: the numerator is positive if

O2
c51
¼
� 2o2

r n2 þ 1
� �

þ 2O2
cn2 n2 � 1
� �� �

þ 4n2O2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1ð Þo2

r � n2O2
c

q
�2 n2 þ 1ð Þ

2
oO2oO2

c52

¼
� 2o2

r n2 þ 1
� �

þ 2O2
cn2 n2 � 1
� �� �

� 4n2O2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1ð Þo2

r � n2O2
c

q
�2 n2 þ 1ð Þ

2

provided that

� 2o2
r n2 þ 1
� �

þ 2O2
cn2 n2 � 1
� �� �

þ 4n2O2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1ð Þo2

r � n2O2
c

q
o0,

otherwise, if

0oO2oO2
c52
¼

� 2o2
r n2 þ 1
� �

þ 2O2
cn2 n2 � 1
� �� �

� 4n2O2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1ð Þo2

r � n2O2
c

q �
�2 n2 þ 1ð Þ

2
.

The denominator is positive for O2
c4O2

c4 if Mstatðn
2 þ 1Þð1þ 2n2Þ4mrn

4; otherwise, it is always negative.

�
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O2
c
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Mstat n2 þ 1ð Þ

4o2
r4O2
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,
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�2 n2 þ 1ð Þ

2
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¼

� 2o2
r n2 þ 1
� �

þ 2O2
cn2 n2 � 1
� �� �

�4n2O2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1ð Þo2

r � n2O2
c

q �	
�2 n2 þ 1ð Þ

2

and � 2o2
r n2 þ 1
� �

þ 2O2
cn2 n2 � 1
� �� �

þ 4n2O2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1ð Þo2

r � n2O2
c

q
o0; otherwise; if

0oO2oO2
c52
¼

� 2o2
r n2 þ 1
� �

þ 2O2
cn2 n2 � 1
� �� �

�4n2O2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1ð Þo2

r � n2O2
c

q �	
�2 n2 þ 1ð Þ

2
.

The denominator is negative for O2
c4O2

c4 if Mstat n2 þ 1
� �

1þ 2n2
� �

omrn
4; otherwise, it is always positive.
�
 If O2
cðn

2=ðn2 þ 1ÞÞ4o2
r the numerator is always negative. The sign of the denominator is the same as in the

above case.
The last term E is negative between Oc2 and Oc with

O2
c2 ¼

O2
c

1þ m
Mstat n2þ1ð Þ

þ
o2

1þ
Mstat n2þ1ð Þ

m

and

O2
c ¼

K stat

Mstat

n2 � 1
� �2

n2 þ 1

corresponding to the ring’s first critical speed. These last two rotational speeds determine the rotational speed
range over which the system is unstable even without rubbing. It will be shown below that this instability
consists of a divergence in the ring’s forward mode shape. This phenomenon is close to that shown by Canchi
and Parker [8] or by Iwan and Stahl [3], and Iwan and Moeller [4] in the case of a disc instead of a ring, with
the influences of the load parameters also being quite similar.

In all these expressions, o2
rj
¼ krj

=mrj
is the squared angular frequency of the radial spring-mass.

It can thus be seen that this kind of system with rubbing is almost always unstable. As a matter of fact, it
only lies within specific rotational speed ranges, i.e. only between Oc51

and Oc52
can the above coefficients all be

positive in the case of a lightweight system in comparison with the ring’s (i.e. mrn
4oMstatðn

2 þ 1Þð1þ 2n2Þ)
and a stiffness, such that: o2

r4O2
cðn

2=ðn2 þ 1ÞÞ.
The effects of both a mass rubbing on the ring and of the stiffness may be separated. Figs. 3a and 3c display

the stability analysis of a radial stiffness (without mass) rubbing against the ring with m ¼ 0.01 and m ¼ 0.1,
respectively. Figs. 3b and 3d show associated zooms of Figs. 3a and 3c, respectively. As explained previously, a
divergence instability in the forward mode shape of the ring between Oc and Oc2 can be observed. Moreover,
as expected, once the rotational speed is greater than 0 revmin�1, the system, and especially the backward
mode shape of the ring, is unstable because of rubbing. This rubbing effect is well-known and has
been highlighted, for instance, in the case of a modal representation of a turbine engine excited by rubbing
forces [11]. It thus appears that as the rubbing coefficient increases, instability rises even faster. The case of just
one mass rubbing on a ring will now be considered; Fig. 4 presents the associated stability analysis. Here
again, the system is unstable as soon as the rotational speed differs from zero, with the unstable mode now
however being the ring’s forward mode shape. A divergence instability in the forward mode shape nonetheless
remains after reaching the critical system speed, between Oc2 and Oc, and mode coupling between the forward
and backward mode shapes of the ring. It should be noted that this mode-coupling appears even without
rubbing and is due to load displacement on the elastic ring. This phenomenon has been reported in the case of
a disc instead of a ring (see Refs. [3,4]). Figs. 4c and 4d show the stability analysis for the same system as in
Figs. 4a and 4b, but with a higher rubbing coefficient. The effect of the rubbing coefficient is the same as
before. Both a stiffness and mass will now be considered. Figs. 5a and 5c (with the associated zooms in
Figs. 5b and 5d, respectively) display stability analysis for a radial spring-mass rubbing on the ring’s two-node
diameter mode shape. In both cases, the mass is mr ¼ 100 kg, yet Figs. 5a and 5b include kr ¼ 1� 106Nm�1,
whereas kr ¼ 1� 105Nm�1 in Figs. 5c and 5d. A cross between the real part curves of the ring’s forward and
backward mode shapes can be observed, which seems to be correct in comparison with the last results taken
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Fig. 3. Stability analysis for a radial stiffness of kr ¼ 1� 106Nm�1 rubbing on the two nodal diameter mode shape of the ring with (a)

m ¼ 0.01, (b) being the associated zoom and (c) m ¼ 0.1, and (d) being the associated zoom.
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separately. At low rotational speeds, the stiffness actually destabilises the backward mode shape of the ring,
but at higher rotational speeds the mass, with a negative stiffening effect proportional to rotational speed
(�mrO

2), destabilises the ring’s forward mode shape. This cross only occurs if or4on, where or is the angular
frequency of the spring-mass and on the angular frequency of the ring’s nth nodal diameter mode shape.
Moreover, as indicated on these last figures, the cross occurs at a rotational speed between Oc51

and Oc52
. As

earlier discussed, the system may be stable between Oc51
and Oc52

, as shown in Figs. 5b and 5d. Fig. 6 presents
a stability analysis for the same system as in Fig. 5a, but with a higher rubbing coefficient, once again
emphasising its effect. It can be pointed out that the rubbing coefficient exerts no effect on the remarkable
critical rotational speeds Oc, Oc2 , Oc51

and Oc52
. As the number of nodal diameters of the ring’s mode shape

increases to infinity, the speed range Oc51
;Oc52

h i
collapses to Oc, which itself tends to infinity.

The case of several radial rotating spring-masses rubbing on the ring will now be investigated. Certain
configurations appear to avoid the divergence instability of the forward mode shape between Oc and Oc2 , as
shown in Fig. 7 in the case of spring-masses with or ¼ 100 rad s�1 and m ¼ 0.01. Since this divergence
instability is present without rubbing, the Routh–Hurwitz criterion applied to the characteristic polynomial of
the system with m ¼ 0 can yield a sufficient condition for the disappearance of divergence. This condition may
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Fig. 4. Stability analysis for a mass of 100 kg rubbing against the two nodal diameter mode shape of the ring with (a) m ¼ 0.01, (b) being

the associated zoom and (c) m ¼ 0.1, (d) being the associated zoom.
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be written as

P
j

krj
sin2ðnfjÞ ¼

P
j

krj
cos2ðnfjÞ;P

j

krj
sinðnfjÞ cosðnfjÞ ¼ 0;

P
j

mrj
sin2ðnfjÞ ¼

P
j

mrj
cos2ðnfjÞ;P

j

mrj
sinðnfjÞ cosðnfjÞ ¼ 0:

8>>>>>>>>>><
>>>>>>>>>>:

(3)

These conditions are obviously satisfied in the case shown in Fig. 7c since all the spring-masses have the
same parameter values and are located at f1 ¼ 601, f2 ¼ 1201 and f3 ¼ 1801, which is not true in the cases
shown on the other figures. It can be noted that even in the case with no divergence of the ring’s forward mode
shape, the system is still unstable once the rotational speed differs from 0 revmin�1.
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Fig. 5. Stability analysis of the two nodal diameter mode shape of the ring excited by a rubbing (m ¼ 0.01) radial spring-mass with (a)

or ¼ 100 rad s�1, (b) being the associated zoom and (c) or ¼ 31.6 rad s�1, (d) being the associated zoom whereas on ¼ 34.4 rad s�1.

Fig. 6. (a) Stability analysis of the two nodal diameter mode shape of the ring excited by a rubbing radial spring-mass with

or ¼ 100 rad s�1 and m ¼ 0.1, (b) being the associated zoom.

N. Lesaffre et al. / Journal of Sound and Vibration 299 (2007) 1005–10321012
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Fig. 7. Stability analysis of the two nodal diameter mode shape of the ring excited by (a) one radial spring-mass (b) two radial spring-

masses separated from 601 from each other, (c) three radial spring- masses separated from 601 from each other, (d) three radial spring-

masses two being at 601 form each other and the third one being at 1801 from one of the latter two.

N. Lesaffre et al. / Journal of Sound and Vibration 299 (2007) 1005–1032 1013
3.2. Beams with just one flexural degree of freedom

Here again, this system is quite similar to a rubbing rotating spring-mass tangent to the ring, as depicted in
Fig. 8, in the case of one spring-mass. The matrix equation for the dynamic behaviour of such systems is now:
(2+number of loads)� (2+number of loads). From a stability analysis point of view, the differences between
the beam model with just one flexural dof and the tangent spring-mass model stem from the spin-softening
terms. Those associated with the beam model do not take into account the entire flexural modal mass, but
rather ðmtj

� rbj
Ibj
ðp2=8RstatÞÞ. Another difference also concerns matrix R, which is neither symmetric nor

skew-symmetric (see Appendices A and B). The phenomenon occurring for the tangent spring-masses rubbing
on the ring should however be the same as for beams with just a flexural dof rubbing on a ring. The stability
analysis of such systems can thus be performed using the tangent spring-mass model, which allows considering
load modal parameters. In the case of only one tangent spring-mass rubbing on the casing, the characteristic
polynomial of its matrix equation is

PðsÞ ¼ s2mt þ s 2mmtOð Þ þ kt �mtO2
� �

s2 rMstat n2 þ 1
� �� �

þ K statn
2ðn2 � 1Þ2

��
�Mstatn

2O2 n2 þ 1
� ��2

þ s2 2MstatnO n2 þ 1
� �� �2i

.
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Fig. 8. Model of rubbing rotating spring-mass tangent to the ring.

Fig. 9. Stability analysis for a tangent spring-mass rubbing against the two nodal diameter mode shape of the ring with (a) m ¼ 0.01, and

(b) m ¼ 0.1.

N. Lesaffre et al. / Journal of Sound and Vibration 299 (2007) 1005–10321014
By calculating just the roots of this polynomial, which correspond with the roots of its first member
s2mt þ sð2mmtOÞ þ kt �mtO2, spring-mass stability can be studied. The discriminant of this first member is:
D ¼ O2ð2mtÞ

2
ðm2 þ 1Þ � 4mtkt. If O2oðkt=mtðm2 þ 1ÞÞ, then Do0 and the roots of this polynomial are:

s1 ¼
�2mmtOþ i

ffiffiffiffi
D
p

2mt

and s2 ¼
�2mmtO� i

ffiffiffiffi
D
p

2mt

,

thus Re(s1)o0 and Re(s2)o0 and the spring-mass is stable. Now, if O24ðkt=mtðm2 þ 1ÞÞ, then D40 and
s1 ¼ �2mmtOþ

ffiffiffiffi
D
p� �

=2mt and s2 ¼ �2mmtO�
ffiffiffiffi
D
p� �

=2mt, thus Reðs2Þo0. Concerning the real part of s1, it is
negative if O2oðkt=mtÞ ¼ o2

t and positive if O24o2
t , corresponding to a system divergence. All these results

are valid for the beam, but the remarkable rotational speeds are

4mtkt

2mrbSb
Rstat
p

� �2
þ 4mt mt � rbIb

p2
8Rstat


 �
instead of kt=ðmtðm2 þ 1ÞÞ and kt=ðmt � rbIbðp2=8RstatÞÞ instead of kt/mt. Fig. 9 presents the stability analysis

of one tangent spring-mass rubbing on the ring’s two-node diameter mode shape, with kt ¼ 1� 106Nm�1 and
mt ¼ 100 kg, and with: (a) m ¼ 0.01 and (b) m ¼ 0.1. As expected, the spring-mass is stable until O24o2

t , at
which point it experiences divergence instability. The effect of the rubbing coefficient is the same as before. In
the case of several tangent spring-masses rubbing against the ring, no additional phenomenon occurs. It can
also be observed that both of the ring’s mode shapes appear to be perfectly stable.
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Since the effects of each dof for a beam rubbing on an elastic ring have been studied separately, the beams
can now be considered to possess both dofs.
3.3. Beams with both a traction/compression degree of freedom and a flexural degree of freedom

The beam’s two dofs will now be considered. Once again, this system, as detailed in Appendix A, is similar
to a spring-mass with two dofs (see Appendix B), as displayed in Fig. 1. The differences between these two
models, in addition to all those described above, stem from the gyroscopic terms present since the spring-
masses have two dofs that are not expressed in the same manner. These gyroscopic terms are likely to create
new mode couplings in the system. Nevertheless, as seen in the latter case, the phenomenon appearing for
these two systems should be the same. The spring-mass system will be studied in order to easily handle modal
parameters and afterwards will be compared with the beam model.

Fig. 10 shows the stability analysis of the two-node diameter mode shape of the ring rubbed by a spring-
mass with m ¼ 100 kg, kr ¼ kt ¼ 1� 106Nm�1 and m ¼ 0.1. All phenomena studied earlier resulting from a
tangent spring-mass or a radial spring-mass rubbing on the ring are once again present. The effect of the
rubbing coefficient (not represented here) is still the same: an increase in the slope of the curves’ real part. A
locus veering phenomenon is also in effect between the ring’s backward mode shape and the spring-mass,
followed by mode coupling between the ring’s forward mode shape and the spring-mass. This mode coupling
may result from the gyroscopic terms. Moreover, the speed range concerned by this mode coupling is very
sensitive to the tangential stiffness kt of the spring-mass, as shown in Fig. 11. The greater the tangential
stiffness, the wider the range in mode coupling speed.

Lastly, the effects of several rotating spring-masses can also be studied. Fig. 12 shows the stability analysis
for the two-node diameter mode shape of the ring rubbed by two identical spring-masses with m ¼ 100 kg,
kr ¼ kt ¼ 1� 106Nm�1 and m ¼ 0.1; Fig. 12a corresponds to two loads separated by 601 from each other,
whereas Fig. 12b corresponds to two loads separated by 1801. In both cases, it appears that only one spring-
mass exchanges its mode shape with the backward mode shape of the ring (locus veering) and then experiences
mode coupling with this ring’s forward mode shape. Moreover, in the first case (i.e. spring-masses separated
by 601), the eigenfrequencies of both spring-masses slightly increase after their theoretical divergence, as
shown in Fig. 12a; this does not occur when the two spring-masses are diametrically opposed (see Fig. 12b).
This phenomenon will be analysed further below. Fig. 13 exhibits the stability analysis for the two-node
diameter mode shape of the ring rubbed by three identical rotating spring-masses with m ¼ 100 kg,
kr ¼ kt ¼ 1� 106Nm�1 and m ¼ 0.1, but either separated by 601 from each other (Fig. 13a), or two separated
by 601 and the third at 1801 from one of the other two (Fig. 13b). In the first case, the sufficient condition for
eliminating the divergence instability between Oc and Oc2 is satisfied, hence Fig. 13a shows no divergence
Fig. 10. (a) Stability analysis of the two nodal diameter mode shape of the ring rubbed by a spring-mass having m ¼ 100 kg,

kr ¼ kt ¼ 1� 106Nm�1 and m ¼ 0.1, (b) being the associated zoom. Sm ¼ Spring-mass, F ¼ Forward, B ¼ Backward.
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Fig. 11. Stability analysis of the two nodal diameter mode shape of the ring rubbed by a spring-mass of m ¼ 100 kg,

(a) kr ¼ 1� 107Nm�1, kt ¼ 1� 106Nm�1 (b) kr ¼ 1� 106Nm�1, kt ¼ 1� 107Nm�1and m ¼ 0.1.

Fig. 12. Stability analysis of the two nodal diameter mode shape of the ring rubbed by two spring-masses having m ¼ 100kg,

kr ¼ kt ¼ 1� 106Nm�1 and m ¼ 0.1, (a) separated from 601 from each other (b) separated from 1801 from each other. Sm ¼ Spring-mass,

F ¼ Forward, B ¼ Backward.
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between these rotational speeds, whereas this divergence is still present in Fig. 13b. Once again, in both cases,
only one spring-mass exchanges its mode shape with the ring’s backward mode shape and then experiences
mode coupling with this ring’s forward mode shape. Moreover, after the theoretical divergence in rotational
speed for the three spring-masses, two of them also seem to have slightly increased in eigenfrequency. The
spring-mass eigenfrequencies can be adjusted through their masses and stiffness. A stability analysis for the
two-node diameter mode shape of the ring rubbed by two spring-masses with two different eigenfrequencies
separated by 601 from each other has been plotted in Fig. 14. In this case, just one spring-mass exchanges its
mode shape with the ring’s backward shape, yet both spring-masses experience mode coupling with the ring’s
forward mode shape. The system, like in all other examples, is unstable once the rotational speed differs from
zero.

Concerning the increase in eigenfrequencies of the divergent beams (see Figs. 12a and 13), there is actually a
transition between the divergence and flutter of two, and only two, beams becoming coupled through the ring.
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Fig. 13. Stability analysis of the two nodal diameter mode shape of the ring rubbed by three spring-masses having m ¼ 100 kg,

kr ¼ kt ¼ 1� 106Nm�1 and m ¼ 0.1, (a) separated from 601 from each other (b) two being at 601 from each other and the third one at 1801

from one of the latter two. Sm ¼ Spring-mass, F ¼ Forward, B ¼ Backward.
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The mode shape being considered for the ring is indeed very important for this coupling between two beams
and the ring that provides steady-state contact. Although all simulations presented in this paper pertain to the
ring’s two-node diameter mode shape, Fig. 15 shows the angular regions where a beam located at 601 in the
rotating frame can couple with another beam for: (a) the ring’s two-node diameter mode shape, and (b) its
three-node diameter mode shape. It thus appears that four regions exist for the ring’s two-node diameter mode
shape, whereas six exist with the ring’s three-node diameter mode shape. It can moreover be seen that as ring
deformation increases, the coupling regions become narrower. For the two-node diameter mode shape for
example, each coupling region is 361 wide, while for the three-node diameter mode shape, each one is 161 wide.
It can be noted that the whole angular position range, over which two blades can couple, is greater in the case
of the ring’s two-node diameter mode shape (1441) than in the case of its three-node diameter mode shape
(961). Fig. 16 shows a zoom of Fig. 12a near the coupling region. It can clearly be seen on this image that after
beam divergence, the associated real parts couple with one another, thereby leading to an unstable dynamic
configuration. A case of changing instability has been uncovered by Gaul and Wagner [12], whereby a rotating
system experienced instability divergent from mode-coupling. Moreover, the rotational speed at which
coupling appears varies over the coupling angular region, as indicated in Table 1 for the case of the two-node
diameter mode shape of the ring rubbed (m ¼ 0.1) by two spring-masses with m ¼ 100 kg and
kr ¼ kt ¼ 1� 106Nm�1, the first one being at 601 in the rotating frame and the other between 871 and
1231. It must be pointed out that this phenomenon also occurs with beams featuring different modal
parameters.

It has been said prior that phenomena occurring in the case of a spring-mass with two dofs rubbing on the
flexible ring are the same as those occurring in the case of a beam also with two dofs rubbing on this ring. This
can be confirmed for one rotating load rubbing on the ring’s two-node diameter mode shape. Fig. 17 displays a
stability analysis for this ring’s mode shape rubbed either by a spring-mass (Fig. 17a) or by a beam (Fig. 17b),
both having the same modal parameters: or ¼ 251 rad s�1 and ot ¼ 100 rad s�1 (for the spring-mass:
m ¼ 142.8 kg and kr ¼ 9.036� 106Nm�1 and kt ¼ 1.428� 106Nm�1 and for the beam: mr ¼ 185.66 kg,
mt ¼ 100 kg, kr ¼ 1.175� 107Nm�1 and kt ¼ 1.10� 106N �m�1). As expected, the same phenomena occur in
both cases: locus veering is in effect between the spring-mass and the ring’s backward mode shape, along with
a divergence in its forward mode shape between Oc and Oc2 , mode coupling between this forward mode shape
and the spring-mass, a divergence in this spring-mass and mode coupling between the ring’s forward and
backward mode shapes. The only difference between these two systems is the offset of these phenomena due to
modal parameter differences. The system naturally becomes unstable once the rotational speed differs from
0 revmin�1.
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Fig. 14. Stability analysis of the two nodal diameter mode shape of the ring rubbed by two spring-masses separated from 601 from each

other having m1 ¼ 100 kg, kr1 ¼ 1� 106 Nm�1, kt1 ¼ 1� 107 Nm�1, m2 ¼ 100 kg, kr2 ¼ 1� 107 Nm�1, kt2 ¼ 1� 106 Nm�1 and m ¼ 0.1.

Sm ¼ Spring-mass, F ¼ Forward, B ¼ Backward.

Fig. 15. Coupling regions for (a) the two nodal diameter mode shape of the ring, (b) the three nodal diameter mode shape of the ring.
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4. Rotating beams rubbing on a flexible ring with an angle of inclination

The effect of an angle of inclination of a beam rubbing on a rotating disc has been studied by, among others,
Chambrette and Jezequel [7], yet no studies have been found in the literature on the influence of such an angle
between beams rotating with rubbing on the inner surface of an elastic ring. The previous study by
Chambrette and Jezequel [7] demonstrated that this kind of angle can modify the parametric domains where
the system is unstable: the investigated system was a rotating disc excited by a beam with both traction/
compression motion and flexural motion. It has been shown that the same kind of instabilities as those
included in the present study, i.e. divergence after the critical speed and mode coupling, could be obtained and
modified by the angle between the beam and the disc. The main results from this study were in fact that as the
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Fig. 16. Coupling between two spring-masses rubbing (m ¼ 0.1) on the two nodal diameter mode shape of the ring, one being at 601 in the

rotating frame and the other, at 1201, with m1 ¼ 100 kg and kr ¼ kt ¼ 1� 106Nm�1.

Table 1

Coupling rotational speeds between two spring-masses with m ¼ 100 kg and kr ¼ kt ¼ 1� 106Nm�1, the first one being at 601 in the

rotating frame and the other one, in the first coupling angular region (87–1231)

Angular position of second blade (deg.) OX1
(revmin�1) OX2

(revmin�1)

87 1145 1266

90 1060 1139

110 955 973

120 1060 1139

123 1145 1266
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beam became more heavily inclined, the ring’s divergence speed range narrowed and the ring’s mode coupling
was more heavily delayed. It has also been reported that mode couplings could arise even before the critical
speed if the frequency of the beam’s flexural dof was below the disc’s frequency or close to it. The influence of
the angle of inclination on the present system, in the case of just one beam rubbing on the ring, could thus be
studied when the frequency of the beam’s flexural motion lies below or above or close to that of the ring. It
appears however that the mechanisms occurring due to this angle of inclination are the same in all three of
these cases; therefore, only the case where the beam’s flexural motion frequencies lie below ring frequencies
will be detailed herein.

The ring’s two-node diameter mode shape has been set at 30Hz and the flexural motion of the beam at
20Hz. Fig. 18 presents the stability analysis for a beam rubbing on the ring’s two-node diameter mode shape,
with: (a) a ¼ 01, (b) a ¼ 51, (c) a ¼ 101 and (d) a ¼ 891. These values of a have been chosen because of the high
evolution in system frequencies for low values of a. Fig. 19 exhibits the associated appropriate zooms of
Fig. 18. First of all, it may be observed in Fig. 18 that as a increases, the rotational speed at which the system
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Fig. 17. Stability analysis for the two nodal diameter mode shape of the ring rubbed by (a) one spring-mass having two degrees of freedom

and (b) one beam having two degrees of freedom. F ¼ Forward, B ¼ Backward.
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experiences mode coupling between the ring’s forward and backward mode shapes rises, as does the rotational
speed at which the beam’s flexural dof diverges. Moreover, mode coupling between the ring’s forward mode
shape and this flexural dof of the beam appears before divergent instability in the latter, when a increases, as
shown in Fig. 19. On this same figure, it appears that the rotational speed range over which the ring’s forward
mode shape diverges decreases as a increases and then finally disappears. For low values of a, a locus veering
phenomenon between the ring’s forward mode shape and the beam’s flexural motion may be observed,
especially in Fig. 19a. During this phenomenon, the system is bound to be unstable; this instability (mode
coupling type) can thus take effect before the ring’s critical speed. As a increases, the flexural dof frequency
increases and hence the locus veering phenomenon with the forward mode shape disappears. As for mode
coupling between the ring’s forward mode shape and the beam’s flexural motion mentioned above, Fig. 19
shows that as a increases, the associated rotational speed range begins later and has greater values. This
instability occurs after the ring’s critical speed. All these phenomena may be seen continuously as a function of
a, as indicated in Figs. 20 and 21. The evolution in the rotational speed at which both mode shapes of the ring
couple can be monitored in Fig. 20. Fig. 21 shows the evolution of the post-critical mode couplings between
the ring’s forward mode shape and the beam’s flexural motion, as well as the divergence of this latter dof. The
rotational speed range associated with this mode coupling may be increased about 500 revmin�1, from a
configuration at a ¼ 01 to one at a ¼ 891.

The mechanism involved in the inclination of a beam rubbing on an elastic ring thus primarily consists of an
increase in the beam’s flexural frequency. If, when the beam is radial to the ring, its flexural frequency is below
that of the ring because of the evolution with rotational speed, either locus veering or mode coupling can occur
between the ring’s forward mode shape and the beam’s flexural motion even before the ring’s critical speed. In
this case, both eigenfrequencies (of the beam and the ring) are very close to each other (see Fig. 19a), and the
system is bound to be unstable. As a increases, beam frequencies increase until reaching the frequency of its
traction/compression dof. Once the beam frequency has risen above ring frequencies (from a4151), locus
veering concerns its backward mode shape and, as seen in Fig. 19d, the specific eigenfrequencies are no longer
close to one another. This veering does not cause system instability.

This mechanism is the same as in the case where the beam’s flexural frequency is higher than that of the ring.
As a increases, the beam’s flexural frequency increases; however, since it always remains above the ring’s, locus
veering may occur even before the ring’s critical speed yet can only concern its backward mode shape. In this
case, both frequencies are not very close to one another and this veering does not make the system unstable.
While the beam’s flexural frequency decreases with an increase in rotational speed, mode coupling with the
ring’s forward mode shape then occurs.
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Fig. 18. Stability analysis of the two nodal diameter mode shape of the ring (30Hz) rubbed by one beam (20Hz) at (a) a ¼ 01, (b) a ¼ 51,

(c) a ¼ 101 and (d) a ¼ 891.
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The influence of the angle of inclination of the beam rubbing on an elastic ring is therefore close to
that of a beam rubbing on a disc (see Ref. [7]). This angle acts upon the same critical phenomena. As
the inclination angle increases, the rotational speed range over which the ring’s forward mode shape
diverges can in fact be modified (reduced), as can the rotational speed for both mode shapes of the ring
couple (put away). The system can also be made unstable before the ring’s critical speed by means of
mode coupling between the beam’s flexural motion and the ring’s forward mode shape provided the
flexural frequency lies below the ring’s frequency. The beam’s angle of inclination actually modifies the
values of the normal and tangential strength between both structures in contact, thereby modifying
phenomena like divergence or the ring’s mode coupling. This angle also modifies the flexural frequency of the
beam in contact with the ring, making mode couplings possible or not provided items have frequencies close to
each other.

All simulations have been conducted for a ring’s two-node diameter mode shape, yet the same phenomena
are present for other mode shapes as well. Moreover, only one mode shape for the ring and beams has been
considered herein; the phenomena targeted in this study however are quite similar to those that may arise
when considering several mode shapes for each item of the model, as illustrated by Iwan and Stahl [3] and
Iwan and Moeller [4].
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Fig. 19. Zooms associated with Fig. 18—evolution of the forward mode shape divergence of the ring and mode couplings as a function of

a, for (a) a ¼ 01, (b) a ¼ 51, (c) a ¼ 101 and (d) a ¼ 891.
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5. Conclusion

The stability of rotating beams rubbing on an elastic ring has been studied in this article. An energy model
of flexible beams possessing two dofs in steady-state contact with an elastic ring possessing just one in-plane
mode shape has been developed within the rotating frame. This model, devoid of time-dependent terms, has
been studied from a stability point of view. It appears that rubbing always makes the system unstable once the
beam’s rotational speed is non-zero. It has also been shown that a radial stiffness rubbing on the ring tends to
make its backward mode shape unstable, whereas a concentrated mass rubbing on a ring makes the forward
mode shape unstable. The traction/compression dof of a beam rubbing on a ring, in addition to the unstable
phenomena occurring even without rubbing (divergence of the ring’s forward mode shape near its critical
speed and post-critical mode coupling between forward and backward mode shapes), thus starts by making its
backward mode shape unstable and then its forward mode shape. The remarkable rotational speeds of these
phenomena have been determined analytically. As the rubbing coefficient rises, the gradient of the eigenvalue
real parts also rises. The beams’ flexural dof yields mode couplings and locus veering with the ring. The
influence of several beams rubbing on a ring has been examined and some cases of coupling between beams
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Fig. 20. Campbell diagram of the two nodal diameter mode shape of the ring (30Hz) rubbed by one beam (20Hz), as a function of

a—evolution of Omc.

Fig. 21. Campbell diagram of the two nodal diameter mode shape of the ring (30Hz) rubbed by one beam (20Hz), as a function of

a—position of the mode couplings between the forward mode shape and the flexure motion of the beam as well as the evolution of the

divergence of this latter degree of freedom.
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highlighted. Lastly, an angle of inclination between the beams and the ring has been considered. It has also
been demonstrated that the main result of this parameter was the increase in the beam’s flexural frequency
with inclination, thus leading to veering and mode couplings.
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Appendix A

Expressions of the kinetic energy and potential energy, as well as the work of rubbing strength associated
with the model of j rotating beams located at fj within the rotating frame rubbing on the flexible inextensible
ring with inclination angle aj

The expression of the kinetic energy of the system is given by
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The expression of the potential energy of the system is given by
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When including Ritz functions for the dofs in the above expressions and in considering the relationship
between the ring’s radial dof and both the beam’s dofs: usðf ¼ fj ; tÞ ¼ �utj

ðx ¼ Rstat; tÞ
cos aj þ uf j

ðx ¼ Rstat; tÞ sin aj, these energies and potentials can be written by
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The expression of the potential energy of the system is now given by

g ¼
1

2

Z 2p�Ot

�Ot

EstatI stat

R3
stat

q2us

qf2
ðf; tÞ þ usðf; tÞ

� �2

dfþ
X

j

1

2
Ebj

Sbj

p2

8Rstat

u2
s ðfj ; tÞ

cos2aj

þ
X

j

1

2
Ebj

Sbj

p2

8Rstat
tan2aj þ

1

2
Ebj

Ibj

p4

32R3
stat

( )
u2f j
�
X

j

Ebj
Sbj

p2

8Rstat

tan aj

cos aj

usðfj ; tÞuf j
.



ARTICLE IN PRESS
N. Lesaffre et al. / Journal of Sound and Vibration 299 (2007) 1005–1032 1025
The expression for rubbing work is given by
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with in the direct centripetal frame, Tbj!stat ¼ �mNbj!statsignðV slipÞ being the rubbing strength of the jth beam
on the ring. In this expression, Vslip is the slip speed of the beam on the ring and Nbj!stat the radial load of the
jth beam on the stator. For instance, in the case of contacts between blades of a rotating machine and the
casing, it can be expressed by the radial load due to the unbalanced mass �NU plus a dynamic load due to the
dynamics of the jth beam. In order to include this rubbing strength into the matrix equation of system
dynamic behaviour and perform a stability analysis, this rubbing strength can be expressed by
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This implies that rubbing strength always follows the same direction, making this model valid if the radial load
due to unbalanced mass is far greater than the dynamic load due to dynamics of the jth beam, which is
acceptable, and if Vslip always retains the same sign. This latter condition is true for a sufficient rotational
speed. In all cases, the main purpose of this model and of this study is to detect the appearance of instabilities
and not to calculate potential limit cycles this far into the study. The expression of Tbj!stat can be obtained by
the Hamilton principle using Lagrangian multipliers. It should be noted that the Ritz functions for the beams’
equal unity at their end rubbing against the ring; beam parameters appearing in this rubbing strength are
hence actually modal parameters of the beams at their end rubbing against the ring. Only one mode shape of
the stator has been considered at this time, i.e.: oðf; tÞ ¼ AnðtÞ cos nfþ BnðtÞ sin nf and
usðf; tÞ ¼ �nAnðtÞ sin nfþ nBnðtÞ cos nf.

The matrix equation of system dynamic behaviour is

M €Xþ ðGþ RÞ _Xþ KX ¼ F,

with: XT ¼ fAn Bn uf 1 � � � � � � � � � uf j g

M ¼

M11 M12 0 � � � � � � � � � 0

M21 M22 0 � � � � � � � � � 0

mr1
tan a1
cos a1
� m cos a1 þ sin a1 tan a1ð Þ


 �
n sinðnf1Þ �mr1

tan a1
cos a1
� m cos a1 þ sin a1 tan a1ð Þ


 �
n cosðnf1Þ M33 0 � � � � � � 0

..

. ..
.

0 . .
.

0 � � � 0

..

. ..
. ..

.
0 . .

. . .
. ..

.

..

. ..
. ..

. ..
. . .

. . .
.

0

mrj

tan aj

cos aj
� m cos aj þ sin aj tan aj

� �
 �
n sinðnfjÞ �mrj

tan aj

cos aj
� m cos aj þ sin aj tan aj

� �
 �
n cosðnfjÞ 0 0 � � � 0 M ðjþ2Þðjþ2Þ

2
6666666666666664

3
7777777777777775
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M11 ¼Mstatðn
2 þ 1Þ þ

X
j

mrj
n2

sin2ðnfjÞ

cos2 aj

þ m
X

j

mrj
1þ

h

2Rstat
ðn2 � 1Þ

� �
cosðnfjÞ � n sinðnfjÞ tan aj

	 �
n sinðnfjÞ,

M12 ¼ �
X

j

mrj
n2

sinðnfjÞ cosðnfjÞ

cos2 aj

� m
X

j

mrj
1þ

h

2Rstat
ðn2 � 1Þ

� �
cosðnfjÞ � n sinðnfjÞ tan aj

	 �
n cosðnfjÞ,

M21 ¼ �
X

j

mrj
n2

sinðnfjÞ cosðnfjÞ

cos2 aj

þ m
X

j

mrj
1þ

h

2Rstat
ðn2 � 1Þ

� �
sinðnfjÞ þ n cosðnfjÞ tan aj

	 �
n sinðnfjÞ,

M22 ¼Mstatðn
2 þ 1Þ þ

X
j

mrj
n2

cos2ðnfjÞ

cos2 aj

� m
X

j

mrj
1þ

h

2Rstat
ðn2 � 1Þ

� �
sinðnfjÞ þ n cosðnfjÞ tan aj

	 �
n cosðnfjÞ,

M33 ¼ mt1 þmr1 tan
2aj � mðcos a1 þ sin a1 tan a1Þðmr1 �mt1Þ sin a1,

M ðjþ2Þðjþ2Þ ¼ mtj
þmrj

tan2aj � mðcos aj þ sin aj tan ajÞðmrj
�mtj

Þ sin aj,

G ¼

0 �2MstatnOðn2 þ 1Þ �2rb1
Sb1

Rstat
p On

sinðnf1Þ

cos a1
� � � � � � � � � �2rbj

Sbj

Rstat
p On

sinðnfj Þ

cos aj

2MstatnO n2 þ 1
� �

0 2rb1
Sb1

Rstat
p On

cosðnf1Þ

cos a1
� � � � � � � � � 2rbj

Sbj

Rstat
p On

cosðnfj Þ

cos aj

2rb1
Sb1

Rstat
p On

sinðnf1Þ

cos a1
�2rb1

Sb1
Rstat
p On

cosðnf1Þ

cos a1
0 � � � � � � � � � 0

..

. ..
. ..

. . .
. ..

.

..

. ..
. ..

. . .
. ..

.

..

. ..
. ..

. . .
. ..

.

2rbj
Sbj

Rstat
p On

sinðnfjÞ

cos aj
�2rbj

Sbj

Rstat
p On

cosðnfj Þ

cos aj
0 � � � � � � � � � 0

2
666666666666666664

3
777777777777777775

,

R ¼

R11 R12 R13 � � � � � � � � � R1ðjþ2Þ

R21 R22 R23 � � � � � � � � � R2ðjþ2Þ

R31 R32 2mrb1
Sb1

Rstat
p Oðcos a1 þ sin a1 tan a1Þ

2 0 � � � 0 0

..

. ..
.

0 . .
.

0 ..
. ..

.

..

. ..
. ..

.
0 . .

.
0 ..

.

..

. ..
. ..

. ..
.

0 . .
. ..

.

R jþ2ð Þ1 R jþ2ð Þ2 0 0 � � � 0 2mrbj
Sbj

Rstat
p Oðcos aj þ sin aj tan ajÞ

2

2
666666666666664

3
777777777777775

R11 ¼ �
X

j

2mrbj
Sbj

Rstat

p
On sinðnfjÞ tan aj 1þ

h

2Rstat
ðn2 � 1Þ

� �
cosðnfjÞ � n sinðnfjÞ tan aj

	 �
;

R12 ¼
X

j

2mrbj
Sbj

Rstat

p
On cosðnfjÞ tan aj 1þ

h

2Rstat
ðn2 � 1Þ

� �
cosðnfjÞ � n sinðnfjÞ tan aj

	 �
,
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R21 ¼ �
X

j

2mrbj
Sbj

Rstat

p
On sinðnfjÞ tan aj 1þ

h

2Rstat
ðn2 � 1Þ

� �
sinðnfjÞ þ n cosðnfjÞ tan aj

	 �
;

R22 ¼
X

j

2mrbj
Sbj

Rstat

p
On cosðnfjÞ tan aj 1þ

h

2Rstat
ðn2 � 1Þ

� �
sinðnfjÞ þ n cosðnfjÞ tan aj

	 �
;

R13 ¼ �2mrb1
Sb1

Rstat

p
Oðcos a1 þ sin a1 tan a1Þ 1þ

h

2Rstat
ðn2 � 1Þ

� �
cosðnf1Þ � n sinðnf1Þ tan a1

	 �
,

R1ðjþ2Þ ¼ �2mrbj
Sbj

Rstat

p
Oðcos aj þ sin aj tan ajÞ 1þ

h

2Rstat
ðn2 � 1Þ

� �
cosðnfjÞ � n sinðnfjÞ tan aj

	 �
,

R23 ¼ �2mrb1
Sb1

Rstat

p
Oðcos a1 þ sin a1 tan a1Þ 1þ

h

2Rstat
ðn2 � 1Þ

� �
sinðnf1Þ þ n cosðnf1Þ tan a1

	 �
,

R2ðjþ2Þ ¼ �2mrbj
Sbj

Rstat

p
Oðcos aj þ sin aj tan ajÞ 1þ

h

2Rstat
ðn2 � 1Þ

� �
sinðnfjÞ þ n cosðnfjÞ tan aj

	 �
,

R31 ¼ 2mrb1
Sb1

Rstat

p
On sinðnf1Þ tan a1ðcos a1 þ sin a1 tan a1Þ,

R32 ¼ �2mrb1
Sb1

Rstat

p
On cosðnf1Þ tan a1ðcos a1 þ sin a1 tan a1Þ,

R jþ2ð Þ1 ¼ 2mrbj
Sbj

Rstat

p
On sinðnfjÞ tan ajðcos aj þ sin aj tan ajÞ,

R jþ2ð Þ2 ¼ �2mrbj
Sbj

Rstat

p
On cosðnfjÞ tan ajðcos aj þ sin aj tan ajÞ,

K ¼

K11 K12 K13 � � � � � � � � � K1ðjþ2Þ

K21 K22 K23 � � � � � � � � � K2ðjþ2Þ

kr1 �mr1O
2

� �
n sinðnf1Þ

tan a1
cos a1
� mðcos a1 þ sin a1 tan a1Þ


 �
� kr1 �mr1O

2
� �

n cosðnf1Þ
tan a1
cos a1
� mðcos a1 þ sin a1 tan a1Þ


 �
K33 0 � � � � � � 0

..

. ..
.

0 . .
.

0 � � � 0

..

. ..
. ..

.
0 . .

. . .
. ..

.

..

. ..
. ..

. ..
. . .

. . .
.

0

krj
�mrj

O2

 �

n sinðnfjÞ
tan aj

cos aj
� mðcos aj þ sin aj tan ajÞ


 �
� krj

�mrj
O2


 �
n cosðnfjÞ

tan aj

cos aj
� mðcos aj þ sin aj tan ajÞ


 �
0 0 � � � 0 K ðjþ2Þðjþ2Þ

2
66666666666666664

3
77777777777777775

,

K11 ¼ K statn
2ðn2 � 1Þ2 �Mstatn

2O2ðn2 þ 1Þ þ
X

j

ðkrj
�mrj

O2
Þn2

sin2ðnfjÞ

cos2aj

þ m
X

j

krj
�mrj

O2

 �

n sinðnfjÞ 1þ
h

2Rstat
ðn2 � 1Þ

� �
cosðnfjÞ � n sinðnfjÞ tan aj

	 �
,

K12 ¼ �
X

j

ðkrj
�mrj

O2Þn2
sinðnfjÞ cosðnfjÞ

cos2aj

� m
X

j

krj
�mrj

O2

 �

n cosðnfjÞ

� 1þ
h

2Rstat
ðn2 � 1Þ

� �
cosðnfjÞ � n sinðnfjÞ tan aj

	 �
,
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K21 ¼ �
X

j

ðkrj
�mrj

O2Þn2
sinðnfjÞ cosðnfjÞ

cos2aj

þ m
X

j

krj
�mrj

O2

 �

n sinðnfjÞ

� 1þ
h

2Rstat
ðn2 � 1Þ

� �
sinðnfjÞ þ n cosðnfjÞ tan aj

	 �
,

K22 ¼ K statn
2ðn2 � 1Þ2 �Mstatn

2O2ðn2 þ 1Þ þ
X

j

ðkrj
�mrj

O2Þn2
cos2ðnfjÞ

cos2aj

� m
X

j

krj
�mrj

O2

 �

n cosðnfjÞ 1þ
h

2Rstat
ðn2 � 1Þ

� �
sinðnfjÞ þ n cosðnfjÞ tan aj

	 �
,

K13 ¼ kr1 �mr1O
2

� �
n sinðnf1Þ

tan a1
cos a1

þ m 1þ
h

2Rstat
ðn2 � 1Þ

� �
cosðnf1Þ � n sinðnf1Þ tan a1

	 �

� kr1 �mr1O
2

� �
� kt1 � mt1 � rb1

Ib1

p2

8Rstat

	 �
O2

	 �� 
sin a1,

K1ðjþ2Þ ¼ krj
�mrj

O2

 �

n sinðnfjÞ
tan aj

cos aj

þ m 1þ
h

2Rstat
ðn2 � 1Þ

� �
cosðnfjÞ � n sinðnfjÞ tan aj

	 �

� krj
�mrj

O2

 �

� ktj
� mtj

� rbj
Ibj

p2

8Rstat

	 �
O2

	 �� 
sin aj ,

K23 ¼ � kr1 �mr1O
2

� �
n cosðnf1Þ

tan a1
cos a1

þ m 1þ
h

2Rstat
ðn2 � 1Þ

� �
sinðnf1Þ þ n cosðnf1Þ tan a1

	 �

� kr1 �mr1O
2

� �
� kt1 � mt1 � rb1

Ib1

p2

8Rstat

	 �
O2

	 �� 
sin a1,

K2ðjþ2Þ ¼ � krj
�mrj

O2

 �

n cosðnfjÞ
tan aj

cos aj

þ m 1þ
h

2Rstat
ðn2 � 1Þ

� �
sinðnfjÞ þ n cosðnfjÞ tan aj

	 �

� krj
�mrj

O2

 �

� ktj
� mtj

� rbj
Ibj

p2

8Rstat

	 �
O2

	 �� 
sin aj,

K33 ¼ kr1 tan
2a1 þ kt1

� �
� mr1 tan

2a1 þ mt1 � rb1
Ib1

p2

8Rstat

	 �� 
O2 � mðcos a1 þ sin a1 tan a1Þ

� kr1 �mr1O
2

� �
� kt1 � mt1 � rb1

Ib1

p2

8Rstat

	 �
O2

	 �� 
sin a1,

K ðjþ2Þðjþ2Þ ¼ krj
tan2aj þ ktj

h i
� mrj

tan2aj þ mtj
� rbj

Ibj

p2

8Rstat

	 �� 
O2 � mðcos aj þ sin aj tan ajÞ

� krj
�mrj

O2

 �

� ktj
� mtj

� rbj
Ibj

p2

8Rstat

	 �
O2

	 �� 
sin aj,
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F ¼

P
j

4rbj
Sbj

R2
stat

p2
O2 þNU


 �
n
sinðnfj Þ

cos aj
þ
P

j

m 1þ h
2Rstat
ðn2 � 1Þ

n o
cosðnfjÞ � n sinðnfjÞ tan aj

h i
4rbj

Sbj

R2
stat

p2
O2 þNU


 �

�
P

j

4rbj
Sbj

R2
stat

p2
O2 þNU


 �
n
cosðnfj Þ

cos aj
þ
P

j

m 1þ h
2Rstat
ðn2 � 1Þ

n o
sinðnfjÞ þ n cosðnfjÞ tan aj

h i
4rbj

Sbj

R2
stat

p2
O2 þNU


 �

4rb1
Sb1

R2
stat

p2
O2 þNU


 �
tan a1 � m½cos a1 þ sin a1 tan a1� 4rb1

Sb1

R2
stat

p2
O2 þNU


 �
..
.

..

.

..

.

4rbj
Sbj

R2
stat

p2
O2 þNU


 �
tan aj � m½cos aj þ sin aj tan aj � 4rbj

Sbj

R2
stat

p2
O2 þNU


 �

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

.

In these expressions,

mrj
¼ rbj

Sbj

Rstat

2
and mtj

¼ rbj
Sbj

Rstat
3

2
�

4

p

	 �
þ rbj

Ibj

p2

8Rstat

are the modal mass of traction/compression and flexure, respectively.

krj
¼ Ebj

Sbj

p2

8Rstat
and ktj

¼ Ebj
Ibj

p4

32R3
stat

are the modal stiffness of traction/compression and flexure, respectively.
Appendix B

Expressions of the kinetic energy and potential energy, as well as of the work of the rubbing strength
associated with the simplified model of rotating spring-masses featuring two degrees of freedom rubbing on
the flexible inextensible ring.

The expression of system kinetic energy is given by

T ¼
1

2

Z 2p�Ot

�Ot

rstatSstat _usðf; tÞ � O
qus

qf
ðf; tÞ

� 2
þ _wðf; tÞ � O

qw

qf
ðf; tÞ

� 2( )
Rstat df

þ
X

j

1

2
mj _u

2
s ðf; tÞ þ O2 Rstat � usðf; tÞð Þ

2
� �

dðf� fjÞ þ
X

j

1

2
mj _x

2ðf; tÞ þ O2x2
� �

dðf� fjÞ

þ
X

j

mjO _usðf; tÞxðf; tÞ þ _xðf; tÞ Rstat � usðf; tÞð Þ½ �dðf� fjÞ.

The expression of system potential energy is given by

g ¼
1

2

Z 2p�Ot

�Ot

EstatI stat

R3
stat

q2us

qf2
ðf; tÞ þ usðf; tÞ

� �2

dfþ
X

j

1

2
krj

u2
s ðf; tÞdðf� fjÞ þ

X
j

1

2
ktj

x2
j ðf; tÞdðf� fjÞ.

The expression of the rubbing work can now be given by

W ext ¼
X

j

Tmj!stat oðf; tÞ 1�
h

2Rstat

� �
�

h

2Rstat

qusðf; tÞ
qf

� xjðf; tÞ
� 

dðf� fjÞ,
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with

Tmj!stat ¼ m NU þmj €usðf; tÞ � O2usðf; tÞ þ O2Rstat þ 2 _xjðf; tÞO
� �

þ krj
usðf; tÞ

h i
dðf� fjÞ

being the rubbing strength of mass mj on the stator.
The same remarks as those offered in Appendix A can be forwarded here concerning validity conditions of

the rubbing model. Here again, only one mode shape of the stator has been considered at a time.
The matrix equation of system dynamic behaviour is as follows:

M €Xþ ðGþ RÞ _Xþ KX ¼ F,

with XT ¼ An Bn x1 � � � � � � � � � xj

n o
;

M ¼

M11 M12 0 � � � � � � � � � 0

M21 M22 0 � � � � � � � � � 0

�mm1n sinðnf1Þ mm1n cosðnf1Þ m1 0 � � � � � � 0

..

. ..
.

0 . .
.

0 � � � 0

..

. ..
. ..

.
0 . .

. . .
. ..

.

..

. ..
. ..

. ..
. . .

. . .
.

0

�mmjn sinðnfjÞ mmjn cosðnfjÞ 0 0 � � � 0 mj

2
666666666666664

3
777777777777775

,

M11 ¼Mstatðn
2 þ 1Þ þ

X
j

mjn
2sin2ðnfjÞ þ m 1þ

h

2Rstat
ðn2 � 1Þ

� �X
j

mjn sinðnfjÞ cosðnfjÞ;

M12 ¼ �
X

j

mjn
2 sinðnfjÞ cosðnfjÞ � m 1þ

h

2Rstat
ðn2 � 1Þ

� �X
j

mjncos
2ðnfjÞ,

M21 ¼ �
X

j

mjn
2 sinðnfjÞ cosðnfjÞ þ m 1þ

h

2Rstat
ðn2 � 1Þ

� �X
j

mjnsin
2
ðnfjÞ,

M22 ¼Mstatðn
2 þ 1Þ þ

X
j

mjn
2cos2ðnfjÞ � m 1þ

h

2Rstat
ðn2 � 1Þ

� �X
j

mjn sinðnfjÞ cosðnfjÞ,

G ¼

0 �2MstatnOðn2 þ 1Þ �2m1On sinðnf1Þ � � � � � � � � � �2mjOn sinðnfjÞ

2MstatnOðn2 þ 1Þ 0 2m1On cosðnf1Þ � � � � � � � � � 2mjOn cosðnfjÞ

2m1On sinðnf1Þ �2m1On cosðnf1Þ 0 � � � � � � � � � 0

..

. ..
. ..

. . .
. ..

.

..

. ..
. ..

. . .
. ..

.

..

. ..
. ..

. . .
. ..

.

2mjOn sinðnfjÞ �2mjOn cosðnfjÞ 0 � � � � � � � � � 0

2
666666666666664

3
777777777777775

,
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R ¼

0 0 �2mm1O cosðnf1Þ 1þ h
2Rstat
ðn2 � 1Þ

n o
� � � � � � � � � �2mmjO cosðnfjÞ 1þ h

2Rstat
ðn2 � 1Þ

n o
..
. ..

.
�2mm1O sinðnf1Þ 1þ h

2Rstat
ðn2 � 1Þ

n o
� � � � � � � � � �2mmjO sinðnfjÞ 1þ h

2Rstat
ðn2 � 1Þ

n o
..
. ..

.
2mm1O 0 � � � 0 0

..

. ..
.

0 . .
.

0 ..
. ..

.

..

. ..
. ..

.
0 . .

.
0 ..

.

..

. ..
. ..

. ..
.

0 . .
. ..

.

0 0 0 0 � � � 0 2mmjO

2
6666666666666666664

3
7777777777777777775

,

K ¼

K11 K12 0 � � � � � � � � � 0

K21 K22 0 � � � � � � � � � 0

�m kr1 �m1O2
� �

n sinðnf1Þ m kr1 �m1O2
� �

n cosðnf1Þ kt1 �m1O2 0 � � � � � � 0

..

. ..
.

0 . .
. . .

.
� � � 0

..

. ..
. ..

. . .
. . .

. . .
. ..

.

..

. ..
. ..

. ..
. . .

. . .
.

0

�m krj
�mjO2


 �
n sinðnfjÞ m krj

�mjO2

 �

n cosðnfjÞ 0 0 � � � 0 ktj
�mjO2

2
666666666666664

3
777777777777775

,

K11 ¼ K statn
2ðn2 � 1Þ2 �Mstatn

2O2
ðn2 þ 1Þ þ

X
j

ðkrj
�mjO2Þn2sin2ðnfjÞ

þ m 1þ
h

2Rstat
ðn2 � 1Þ

� �X
j

krj
�mjO2


 �
n sinðnfjÞ cosðnfjÞ;

K12 ¼ �
X

j

ðkrj
�mjO2Þn2 sinðnfjÞ cosðnfjÞ � m 1þ

h

2Rstat
ðn2 � 1Þ

� �X
j

krj
�mjO2


 �
ncos2ðnfjÞ,

K21 ¼ �
X

j

ðkrj
�mjO2Þn2 sinðnfjÞ cosðnfjÞ þ m 1þ

h

2Rstat
ðn2 � 1Þ

� �X
j

krj
�mjO2


 �
nsin2ðnfjÞ,

K22 ¼ Kstatn
2ðn2 � 1Þ2 �Mstatn

2O2ðn2 þ 1Þ þ
X

j

ðkrj
�mjO2Þn2cos2ðnfjÞ

� m 1þ
h

2Rstat
ðn2 � 1Þ

� �X
j

krj
�mjO2


 �
n sinðnfjÞ cosðnfjÞ,
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F ¼

P
j

ðmjRstatO2 þNU Þn sinðnfjÞ þ m 1þ h
2Rstat
ðn2 � 1Þ

n oP
j

ðmjO2Rstat þNU Þ cosðnfjÞ

�
P

j

ðmjRstatO2 þNU Þn cosðnfjÞ þ m 1þ h
2Rstat

n2 � 1
� �n oP

j

ðmjO2Rstat þNU Þ sinðnfjÞ

�mðm1O
2Rstat þNU Þ

..

.

..

.

..

.

�mðmjO2Rstat þNU Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

.

Under such conditions, differences between this system and the beam model stem from spin-softening terms
since those associated with the beam model do not take into account the entire flexural modal mass, but
instead ðmtj

� rbj
Ibj
ðp2=8RstatÞÞ. Another difference concerning both the matrix R and gyroscopic terms has

also been identified.
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